Mutations of the Same Conserved Glutamate Residue in NBD2 of the Sulfonylurea Receptor 1 Subunit of the KATP Channel Can Result in Either Hyperinsulinism or Neonatal Diabetes

نویسندگان

  • Roope Männikkö
  • Sarah E. Flanagan
  • Xiuli Sim
  • David Segal
  • Khalid Hussain
  • Sian Ellard
  • Andrew T. Hattersley
  • Frances M. Ashcroft
چکیده

OBJECTIVE Two novel mutations (E1506D, E1506G) in the nucleotide-binding domain 2 (NBD2) of the ATP-sensitive K(+) channel (K(ATP) channel) sulfonylurea receptor 1 (SUR1) subunit were detected heterozygously in patients with neonatal diabetes. A mutation at the same residue (E1506K) was previously shown to cause congenital hyperinsulinemia. We sought to understand why mutations at the same residue can cause either neonatal diabetes or hyperinsulinemia. RESEARCH DESIGN AND METHODS Neonatal diabetic patients were sequenced for mutations in ABCC8 (SUR1) and KCNJ11 (Kir6.2). Wild-type and mutant K(ATP) channels were expressed in Xenopus laevis oocytes and studied with electrophysiological methods. RESULTS Oocytes expressing neonatal diabetes mutant channels had larger resting whole-cell K(ATP) currents than wild-type, consistent with the patients' diabetes. Conversely, no E1506K currents were recorded at rest or after metabolic inhibition, as expected for a mutation causing hyperinsulinemia. K(ATP) channels are activated by Mg-nucleotides (via SUR1) and blocked by ATP (via Kir6.2). All mutations decreased channel activation by MgADP but had little effect on MgATP activation, as assessed using an ATP-insensitive Kir6.2 subunit. Importantly, using wild-type Kir6.2, a 30-s preconditioning exposure to physiological MgATP concentrations (>300 µmol/L) caused a marked reduction in the ATP sensitivity of neonatal diabetic channels, a small decrease in that of wild-type channels, and no change for E1506K channels. This difference in MgATP inhibition may explain the difference in resting whole-cell currents found for the neonatal diabetes and hyperinsulinemia mutations. CONCLUSIONS Mutations in the same residue can cause either hyperinsulinemia or neonatal diabetes. Differentially altered nucleotide regulation by NBD2 of SUR1 can explain the respective clinical phenotypes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neonatal Diabetes and Congenital Hyperinsulinism Caused by Mutations in ABCC8/SUR1 are Associated with Altered and Opposite Affinities for ATP and ADP

ATP-sensitive K(+) (KATP) channels composed of potassium inward-rectifier type 6.2 and sulfonylurea receptor type 1 subunits (Kir6.2/SUR1)4 are expressed in various cells in the brain and endocrine pancreas where they couple metabolic status to membrane potential. In β-cells, increases in cytosolic [ATP/ADP]c inhibit KATP channel activity, leading to membrane depolarization and exocytosis of in...

متن کامل

KATP Channel Mutations and Neonatal Diabetes

Since the discovery of the KATP channel in 1983, numerous studies have revealed its physiological functions. The KATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the KATP channel regulates the secretion of insulin by sensing a ...

متن کامل

A universally conserved residue in the SUR1 subunit of the KATP channel is essential for translating nucleotide binding at SUR1 into channel opening

The sulphonylurea receptor (SUR1) subunit of the ATP-sensitive potassium (KATP) channel is a member of the ATP-binding cassette (ABC) protein family. Binding of MgADP to nucleotide-binding domain 2 (NBD2) is critical for channel activation.We identified a residue in NBD2 (G1401) that is fully conserved among ABC proteins and whose functional importance is unknown. Homology modelling places G140...

متن کامل

Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels

ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel fu...

متن کامل

Molecular determinants of ATP-sensitive potassium channel MgATPase activity: diabetes risk variants and diazoxide sensitivity

ATP-sensitive K(+) (KATP) channels play an important role in insulin secretion. KATP channels possess intrinsic MgATPase activity that is important in regulating channel activity in response to metabolic changes, although the precise structural determinants are not clearly understood. Furthermore, the sulfonylurea receptor 1 (SUR1) S1369A diabetes risk variant increases MgATPase activity, but t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2011